TRANSITION AND MORTALITY IMPACT IN POST-COMMUNIST ROMANIA

1Adrian V. Horodnic
Department of Behavioral Sciences,
Faculty of Medicine
“Grigore T. Popa” University of Medicine and Pharmacy
Universitatii Street, no. 16,
700115 Iasi
Romania
Tel.: +40 744 810 766
E-mail: adrian-vasile-horodnic@umfiasi.ro

2Gregory Brock
Department of Finance and Economics
P.O. Box 8152,
Georgia Southern University
Statesboro, GA 30460-8152
USA
Tel.: +912 478 5579
E-mail: gbrock@georgiasouthern.edu

3Cristian Incaltarau
Centre for European Studies
Alexandru Ioan Cuza University of Iasi
Carol I Blvd., no. 19,
700507 Iasi
Romania
Tel.: +40232 201 318
E-mail: cristian.incaltarau@uaic.ro

1Adrian V. Horodnic, PhD (in Economics), is a graduate of the Alexandru Ioan Cuza University in Iasi and he is assistant Professor of Ethics and Economics in Health at “Grigore T. Popa” University of Medicine and Pharmacy. He also works as an administrator and consultant for Group Media Prime SRL and is a founder/member of the NGO Supportive You. He has research interests in spatial economics and has published in such journals as Revista Română de Bioetică and Ovidius University Annals (Economic Sciences Series). His work can be found online at his profile on Researchgate.

2Gregory Brock, PhD (in Economics) is a graduate of The Ohio State University (USA). He has been a professor of economics at Georgia Southern University for 17 years and specializes in transition and regional economics. He has 45 publications in a wide range of journals with his work available on Researchgate, Google scholar and Http://works.bepress.com/gregory_brock profiles.

3Cristian Incaltarau, PhD (in Economics and International Business) is a graduate of Alexandru Ioan Cuza University in Iasi. He is the Researcher at the Centre for European Studies of Alexandru Ioan Cuza University. His research interests include labour mobility and development, economics of remittances, migration transition and health economics. At the Centre of European Studies at Alexandru Ioan Cuza University he serves as editor of the Eastern Journal of European Studies and executive editor of CES Working Papers.
ABSTRACT. The impact of economic conditions on mortality in a large transition economy is analysed using county level data (NUTS III) from post-communist Romania 1997-2014 and a fixed-effects model. Overall mortality, circulatory diseases mortality, neoplasms mortality and external cause mortality move counter-cyclically relative to economic growth. The long and severe transition impoverished a large share of the population and worsened public health. In the future, health will be even more sensitive to changes in economic conditions. Unemployment has little impact on mortality except for digestive diseases mortality. Health care availability, gender, education level, rural concentration and sector of employment significantly impact mortality rates. Policy measures should focus on the counter-cyclical nature of mortality and specific population subgroups in Romania.

KEYWORDS: mortality, economic growth, Romania.

JEL classification: I15, I18, O5.

Introduction

The link between health and economic development has a long history in the literature. Health at the microeconomic level can influence labour market participation, labour supply, labour productivity, earnings and early retirement. Moreover, diseases can also discourage capital accumulation with negative long-term effects on the capital stock. We focus on the macroeconomic and health nexus across regions of Romania. In the literature, periods of economic growth have been shown to negatively (e.g. Khemka, Roberts, 2015; Currie et al., 2015) or positively (e.g. Lindo, 2015) affect the health status of the population. Such mixed findings have a long history in the literature (e.g. Eyer, 1977; Brenner, 1973; 1979; 1982; 1983) and continue recently as well (Arroyave et al., 2015; Lindo, 2015; Ruhm, 2015; Thuilliez, 2016).

Since variations exist across countries (Ariizumi, Schirle, 2012; Buchmueller et al., 2007; Tapia Granados, 2005b) and time periods (Ruhm, 2015) extending the literature with transition countries can shed additional light on these relationships. Investigating the influence of economic performance on health status in Romania is of special interest not only due to the relative lack of studies of Eastern Europe, but also to the particularities of Romania. In Romania, the macroeconomic impact of mortality during the post-communist transition process was muted by the high long-term unemployment, the high number of social insurance pensioners and the high rural population share (Incaltarau et al., 2015). But how did the economic transition influence health at the under studied subnational level? We use a fixed-effects model 1997-2014 at the county level (NUTS III) to answer this question for transition Romania. The paper is structured as follows: The first section reviews the recent cross-
country literature. The second section provides a statistical description of the Romanian post-communist transition. Section three outlines the method and section four discusses the results. The final section concludes.

1. Literature Review

Conventional wisdom has been that good health is a consequence of favourable economic status (Suhrcke et al., 2007) and vice versa poor economic development generally leads to poor health (Sala-i-Martin, 2005). This health-wealth ‘gradient’ (Deaton, 2002; Marmot, 2004) assumes that there is a gradual relationship between improving health and wealth as health improves with income throughout the income distribution. The higher a given group’s income is the lower the chances that the group will be exposed to a wide array of risk factors for poor health outcomes. Therefore the impact of income inequality on health reflects a lack of resources, lower standard of living and consequently higher health risks (Lynch et al., 2000). For example, Rose and Marmot (1981) noticed a higher predisposition to illness for individuals having a lower socioeconomic status. The poorest socioeconomic groups reported the highest overall and cardiovascular in particular mortality rates. However, this by some called “neo-materialist” view could not explain why even though there is a strong relationship between mortality and income inequalities (Wilkinson, 1992); there is little relationship between average income (gross domestic product per capita) and life expectancy in rich countries (Marmot, Wilkinson, 2001). In response, a “psychosocial” interpretation is that in rich countries wellbeing is more closely related to relative income than absolute income; therefore, income inequalities influence health in the sense of induced relative deprivation (Marmot, Wilkinson, 2001). Moreover, income inequalities may increase the feeling of relative deprivation through social networks increasing the risk of mortality (Kawachi et al., 1997).

The two interpretations are complementary emphasizing both absolute and relative material deprivation. Therefore, economic growth is necessary but not sufficient for reducing mortality. The literature gives more details. During economic expansions work can reduce exercise and healthy diets (Ruhm, 2005a; 2005b), long hours can negatively impact leisure time (Sokejima, Kagamimori, 1998; Sparks, Cooper, 1997), and additional income can increase detrimental drinking and smoking behaviour (Brown et al., 2005). Finally, the additional stress alone can negatively impact health (Chandola et al., 2008).

The mixed evidence between improved health and the business cycle is found in many countries. A significant counter-cyclical relationship between mortality and the business cycle was found among men but not women in Sweden suggesting the need to control for gender (Gerdtham, Johannesson, 2005). Higher mortality during expansions is also evident in South Korea (Khang et al., 2005), 13 EU countries (Economou et al., 2008) and Australia (Khemka, Roberts, 2015). However, in the U.S. a pro-cyclical relationship is repeatedly found (Ruhm, 2015), (Laporte, 2004), (Tapia Granados, 2005a), (Stevens et al., 2011) and (Ionides et al., 2013). The pro-cyclical relationship is also found in Germany (Neumayer, 2004), Spain (Tapia Granados, 2005b), Sweden (Tapia Granados, Ionides, 2011), France (Buchmueller et al., 2007) and Mexico (Gonzalez, Quast, 2010). Aggregating data for 23 OECD countries, Gerdtham and Ruhm (2006) also found a pro-cyclical relation especially with countries having weak social insurance systems. Finally, a few studies argued against any cyclical relationship at all (Catalano et al., 2011; Stuckler et al., 2009). Very recently, research has suggested there may be a switch from pro to counter-cyclical health status over time in the
U.S. (Ruhm, 2015) and France (Thuilliez, 2016) with another study arguing against for the U.S (Lindo, 2015).

When using unemployment rates to measure economic cycles, recent studies have differentiated transitory from permanent effects showing that while the transitory effect of increasing unemployment rates is to decrease mortality, the permanent effect of increasing unemployment rates is to increase mortality suggesting a lag effect (Bender, Theodossiou, 2015). Using different levels of education, Edwards (2008) found that in the U.S. working males with a higher level of education experienced pro-cyclical mortality while those with less education experienced counter-cyclical mortality. Stevens et al. (2011) argues that as deaths during expansions come from an increase in mortality among the elderly and not among those active in the labour market, cyclical movements in the quality of health care should be the focus rather than changes in work hours or employment status. Similarly, Arroyave et al. (2015) found that the relationship between business cycles and mortality in Colombia was sensitive to the time period and ages considered. An examination of Romania therefore adds to a wide variety of research findings across many different case studies.

2. Statistical Profile of Health and Economic Transition in Romania

Romania had a unique transition in Eastern Europe as unlike the Czech Republic, Poland, and Hungary which adopted a ‘shock therapy’ strategy, the Romanian transition was more gradual like China. While shock therapy helped other countries experience rapid economic growth that facilitated an improvement in life expectancy (Dolea et al., 2002), Romania’s gradualist approach influenced by low political will (Gallagher, 2004) caused mortality to fall more slowly. Despite a gradualist approach, the Romanian transition path was long and hard. The 1990s had substantial economic volatility with high unemployment and hyperinflation dragging the population into poverty. However, since the beginning of the century Romania has greater macroeconomic stability (Ahrens, Zweynert, 2012). The second set of reforms in the late 1990s and the decision of the European Council to start negotiations for accession of Romania to the EU were crucial for progress during the 2000s until the global Great Recession in 2008.

While the experience of some countries (e.g. Khang et al., 2005) is the impact of an economic crisis on mortality mainly depends on the length and depth of a crisis plus a buffering capacity, Eastern Europe (EE) was particularly ill suited to whether a long transition. Suhrcke, Stuckler (2012) argue that the greatest adverse effects of economic crises on health are generated when economic changes are rapid, social protection and cohesion are weak, and drugs and alcohol are widely available. Post-communist EE countries are characterized by all of these features and suffered a surge in mortality (Brainerd, Cutler, 2005; Cockerham et al., 2006; Ginter, 1996) with cardiovascular mortality in particular a problem (Britton, McKee, 2000; Jood et al., 2009; McKee, Britton, 1998; Neufeld, Rehm, 2013; Pająk, Kozela, 2012).

In Romania, the continuous decline in life expectancy after the fall of communism was attributable to increasing adult mortality. The mortality rate grew from 11.4 deaths per 1000 inhabitants in 1992 to 12.5 in 1996 (National Institute of Statistics, n.d.). However, thanks to poor health policies in the 1980s, child mortality also increased in the 1990s with an epidemic of pediatric AIDS unique to Romania (Dolea et al., 2002). While infant mortality grew during 1991-1994, the trend by 1997 was reversed thanks to the decline of circulatory diseases.
mortality rates (from 7.5 in 1997 to 6.7 in 2014 – see *Figure 1*) along with respiratory diseases and external causes mortality (*Figure 2*).

![Figure 1](image1.png)

Notes: all-cause mortality rate is displayed according to the right axis.

Figure 1. The Evolution of the Main Causes Mortality Rates and their Share in all-cause Mortality in Romania, 1997-2014

Still, in terms of shares, circulatory diseases continued to remain by far the main (60% – *Figure 1*) mortality cause during the entire post-communist period. Neoplasms, respiratory diseases and digestive diseases were the other main mortality causes. While the share of mortality caused by neoplasms rose considerably from 14% in 1997 to more than 19% in 2014, the shares accounted for by circulatory diseases and respiratory disease have slowly decreased from 61.5% and 6.3% in 1997 to 60% and 5.2 in 2014 (*Figure 1*).

![Figure 2](image2.png)

Figure 2. Growth of Mortality Rates (per 1000 inhabitants) by Main Causes, 1997-2014
The business cycle and mortality rate cycle move in opposite directions 1997-2014 with the business cycle measured using real per capita GDP (pcGDP) and the unemployment rate (Figure 3). The economic boom 2002-2008 is associated with lower mortality rates while rates rose during the Great Recession and then have a mixed performance during the current recovery. Therefore the mortality rate behaves in the same counter-cyclical way the unemployment rate does in a standard business cycle.

Notes: unemployment rate growth is displayed according to the left axis.
Source: own representation using data from the Romanian National Institute of Statistics.

Figure 3. Mortality and Economic Fluctuations in Romania, 1997-2014

At the regional level, a countercyclical mortality pattern is evident as well. Bucuresti and Ilfov experienced the largest cumulated growth during the 1997-2014 period (pcGDP grew 250%) followed by Cluj, Prahova, Timis and Sibiu growing over 130% during the same period (Figure 4.a).

Figure 4. Real GDP per cap, Growth and Unemployment Rate, by NUTS III level, 1997-2014

Source: own representation using data from the Romanian National Institute of Statistics.
Counties with the highest economic growth rates have the lowest mortality rates. Comparing Figures 4.a and Figure 5.a, the ten highest growth regions have the 10 lowest mortality rates with the exception of Ilfov region that has the second highest growth and 8th highest mortality. Figure 5.c. and Figure 5.d. reveal the specific mortality problem is high neoplasms and digestive disease mortality.

Figure 5. Mortality per 1000 Inhabitants, by NUTS III level: all-cause Mortality, Circulatory Diseases Mortality, Neoplasms Mortality, Respiratory Diseases Mortality, Digestive Diseases Mortality, and External Causes Mortality, 1997-2014

With regional unemployment rates (Figure 4.b), a countercyclical pattern is not as pronounced as at the national level. Of the top ten regions in terms of unemployment, 3 of them (Mehedinti, Teleorman and Buzau) also have high mortality rates (Figure 5.a).
Types of mortality are detailed geographically in figures 5.b.-5.f. Circulatory disease mortality (Figure 5.b) follows the overall counter-cyclical pattern as it accounts for about half of all mortality. Neoplasms mortality (Figure 5.c) impacts both high and low growth regions equally (e.g. compare high growth Bucharest, Ilfov, Cluj and Timis with low growth Calarasi and Mures). Digestive disease mortality (Figure 5.e) appears to be associated with the low economic growth of regions such as Bacau, Vrancea, Vaslui, Galati, and Teleorman. Neamt, Teleorman, Vaslui, and Buzau regions have high mortality caused by respiratory diseases (Figure 5.d) and a high unemployment rate (Figure 4.b), while Harghita, Tulcea and Satu Mare have the highest mortality due to external causes (Figure 5.f).

In conclusion, the literature analysing the impact of economic growth cycles on mortality shows mixed results. The business cycle may both lower and raise the mortality rate (Gerdtham, Johannesson, 2005; Neumayer, 2005). In the case of Romania, mortality has followed a counter-cyclical path in the transition era. We expect the trend to continue with lower incomes and continued poverty raising mortality rates over time. We now turn to regression analysis for evidence that our main hypothesis of growth negatively impacting mortality is correct and consequently also expect morality to have a positive association with the unemployment rate.

3. Data and Methods

To test whether mortality followed a countercyclical pattern in post-communist Romania, we fit 1997-2014 regional (NUTS III) data to a linear model found in Ruhm (2005a). Variations of the model can be found in Ariizumi, Schirle (2012), Arroyave et al. (2015), Economou et al. (2008), Granados (2005), Khemka, Roberts (2015), Lin (2009), Lindo (2015) and Neumayer (2004). The mortality rate is expressed as the yearly number of deaths per 1,000 inhabitants. Further, for causes of death we here used the International Classification of Diseases - Tenth Revision of WHO (2010), namely circulatory diseases, neoplasms, respiratory, digestive and external causes mortality (see Table 1). All-cause mortality and specific cause mortality are regressed on to per capita Gross Regional Product (GRP), the unemployment rate and some control variables (e.g. healthcare availability, education level, and gender) using the literature. Definitions and descriptive data on the variables are in Table 1 and Table 1A in Appendix.

The basic specification of the fixed effects model we have used for estimating the effect of economic growth on health condition of population is:

\[
\text{mortality}_{c,t} = \beta_0 + \beta_1 \text{GDP}_{c,t} + \beta_2 \text{X}_{c,t} + \gamma_c + \delta_t + \epsilon_{c,t}
\]

where mortality_{c,t} is the natural logarithm of the mortality rate in each of 42 counties c and over 18 years t. GDP_{c,t} refers to the real GDP per capita in logarithmic form, X_{c,t} includes a set of control variables, \(\gamma_c \) represents the unobserved county-specific fixed effects which account for differences across counties that are time-invariant, \(\delta_t \) are the year-specific effects which control for factors that vary uniformly across counties and \(\epsilon_{c,t} \) is a stochastic error term. A variation using the unemployment rate as a proxy for economic conditions is also examined:

\[
\text{mortality}_{c,t} = \beta_0 + \beta_1 \text{U}_{c,t} + \beta_2 \text{X}_{c,t} + \gamma_c + \delta_t + \epsilon_{c,t}
\]
Table 1. Variables description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP per capita</td>
<td>Natural logarithm of real GDP per capita. GDP is expressed in Romanian lei (RON) and deflated using the consumer prices indices</td>
</tr>
<tr>
<td>unemployment</td>
<td>unemployment rate</td>
</tr>
<tr>
<td>all-cause mortality</td>
<td>all-cause mortality rate per 1000 inhabitants</td>
</tr>
<tr>
<td>circulatory diseases mortality</td>
<td>natural logarithm of mortality caused by diseases of the circulatory system (per 1000 inhabitants)</td>
</tr>
<tr>
<td>neoplasms mortality</td>
<td>natural logarithm of mortality caused by neoplasms (per 1000 inhabitants)</td>
</tr>
<tr>
<td>respiratory diseases mortality</td>
<td>natural logarithm of mortality caused by diseases of the respiratory system (per 1000 inhabitants)</td>
</tr>
<tr>
<td>digestive diseases mortality</td>
<td>natural logarithm of mortality caused by diseases of the digestive system (per 1000 inhabitants)</td>
</tr>
<tr>
<td>external causes mortality</td>
<td>natural logarithm of mortality caused by injury, poisoning and other consequences of external causes (per 1000 inhabitants)</td>
</tr>
<tr>
<td>Doctors</td>
<td>number of doctors (excluding dentists) per 1000 inhabitants</td>
</tr>
<tr>
<td>secondary education share</td>
<td>people enrolled in secondary education (% of population aged 15-18 years)</td>
</tr>
<tr>
<td>male share</td>
<td>share of masculine population (% of total population)</td>
</tr>
<tr>
<td>old share</td>
<td>population over 65 years old (% of total population of the county)</td>
</tr>
<tr>
<td>rural share</td>
<td>rural population (% of total population of the county)</td>
</tr>
<tr>
<td>industry share</td>
<td>share of employment in industry (% of total employment)</td>
</tr>
</tbody>
</table>

Notes: *1 EUR= 4,4450 RON (National Bank of Romania); ** causes of death correspond to the International Classification of Diseases - Tenth Revision of WHO (2010).

The second model uses exactly the same variables as the first one except for the $U_{c,t}$ which replaces the $GDP_{c,t}$ as a proxy for economic conditions. In Romania, the unemployment cycling is much more muted than a developed economy due to factors such as a large informal economy and emigration though such factors declined in importance after 2004 with greater stability.

An F-test indicated that including county specific effects is preferable to a simple OLS regression. In order to check if time fixed effects are also required along with the county fixed effects, a Wald test was performed that rejected the hypothesis that dummies for all years are jointly null. A Breusch-Pagan Lagrange multiplier (LM) test revealed significant differences across counties so random effects were preferable to a pooled OLS estimation. However, given that we use the entire population of regions and with support from a Hausman test, fixed effects are used instead of random effects. Considering the regional approach, the fixed effects estimates are the preferred option in most studies dealing with the health impact of economic conditions (e.g. Ariizumi, Schirle, 2012; Arroyave et al., 2015; Economou et al., 2008; Khemka, Roberts, 2015; Lindo, 2015; Neumayer, 2004). A modified Wald statistic for group-wise heteroscedasticity in the residuals rejected the hypothesis of homoscedastic residuals (Greene 2000, p.598) and no serial correlation (Table 2A in Appendix). Therefore we used the Driscoll and Kraay (1998) standard errors to address these problems.

4. Results and Discussions

The results (Table 2) show that overall economic growth had a negative net impact on mortality at the regional level during the sample period (Model 1) though additional
explanatory variables makes the result statistically insignificant (Model 3a). Results are robust to the inclusion of time and region fixed effects (Model 3b). Unlike GDP per capita, unemployment did not show a significant impact on mortality as the null hypothesis of a null coefficient could not be rejected in either of models 2, 4a and 4b. The controls for healthcare availability, education level, gender, old age, rural concentration and sector of employment behave as expected. For example, there is a negative relation between the number of doctors (healthcare availability) and mortality. The education level is also inversely associated with mortality in support of an extensive literature (see Davis et al., 2014; Stringhini et al., 2011; Winkleby et al., 1992). More rural regions have higher mortality. Finally, the results indicate an inverse relation between male and industry shares relative to mortality.

Table 2. Regression results for fixed-effects models relating all-cause mortality rates to economic conditions in Romania at NUTS III level

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3a)</th>
<th>(4a)</th>
<th>(3b)</th>
<th>(4b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
<td>ln(mortality)</td>
</tr>
<tr>
<td>ln(GDPpc)</td>
<td>-0.0587*** (0.0158)</td>
<td>-0.0142 (0.0223)</td>
<td>-0.0289 (0.0106)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unemployment</td>
<td>-0.00121** (0.00458)</td>
<td>0.000729 (0.00200)</td>
<td>-0.000133 (0.000540)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctors</td>
<td>-0.0332** (0.0123)</td>
<td>-0.0349*** (0.0104)</td>
<td>-0.0292*** (0.00802)</td>
<td>-0.0325*** (0.00773)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary education enrolment</td>
<td>-0.000372 (0.000370)</td>
<td>-0.000576* (0.000299)</td>
<td>-0.000801** (0.000286)</td>
<td>-0.000752** (0.000262)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>male share</td>
<td>-0.0560** (0.0199)</td>
<td>-0.0551** (0.0203)</td>
<td>-0.0492** (0.0215)</td>
<td>-0.0448* (0.0232)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>old share</td>
<td>-0.00385 (0.00573)</td>
<td>-0.00424 (0.00652)</td>
<td>0.00904 (0.00774)</td>
<td>0.0104 (0.00871)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rural share</td>
<td>0.00344*** (0.000932)</td>
<td>0.00363*** (0.000945)</td>
<td>0.00190** (0.000872)</td>
<td>0.00210** (0.000856)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry share</td>
<td>0.000205 (0.00111)</td>
<td>0.000330 (0.000997)</td>
<td>-0.00179*** (0.000530)</td>
<td>-0.00157** (0.000642)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>3.031*** (0.159)</td>
<td>2.435*** (0.00206)</td>
<td>5.320*** (1.087)</td>
<td>5.139*** (0.988)</td>
<td>5.076*** (1.101)</td>
<td>4.542*** (1.273)</td>
</tr>
</tbody>
</table>

Notes: Estimation using fixed-effects regression with Driscoll-Kraay standard errors (in parentheses). The maximum lag to be considered in the autocorrelation structure was 2. Significance levels * p < 0.1, ** p < 0.05, *** p < 0.01.

Source: own calculations.

Except for respiratory diseases mortality, all the other types which make up 90% of overall mortality followed a countercyclical pattern (Models 5-9 in Table 3). Although unemployment is often seen as the main cause of a morbidity/mortality increase because of
harm to both psychological and physical health (Jin et al., 1995; Wilson, Walker, 1993), this is not the case in Romania. Except for the digestive diseases, unemployment is statistically insignificant for all mortality causes considered (Models 10-14 in Table 3). Our findings are therefore similar to those of Earle and Gehlbach (2011) who found little support for the idea that privatization influenced mortality by increasing unemployment in post-communist countries. In Romania, several factors which kept unemployment artificially low despite low employment too made the rate a bad proxy for the business cycle. After the fall of communism and in to the mid-90s, the easing up of early retirement conditions, large shadow economy (including a high share of population practicing subsistence agriculture) and high emigration flows decreased the labour force and prevented unemployment from spiking up compared to other European states (Incaltarau, Maha, 2014). Healthcare availability is very important for lowering mortality caused by circulatory, digestive diseases and neoplasms but not for respiratory disease mortality. The education level is important for preventing circulatory diseases, but not for neoplasms mortality as the association with neoplasms is positive. A lower male share and lower industry share are associated with a higher mortality caused by circulatory diseases, while a higher rural share and a higher share of population over 65 years old are associated with a higher neoplasm mortality rate. Respiratory diseases mortality is associated with a higher industry share of employment – a feature of transition economies. Also, external causes’ mortality is prevailing in counties with a higher male and industry share.

Table 3. Regression results for fixed-effects models relating mortality rates by cause to economic conditions in Romania at NUTS III level

<table>
<thead>
<tr>
<th></th>
<th>(2) ln(declaratory)</th>
<th>(6) ln(neoplasms)</th>
<th>(7) ln(digestive)</th>
<th>(8) ln(respiratory)</th>
<th>(9) ln(external)</th>
<th>(10) ln(circulatory)</th>
<th>(11) ln(neoplasms)</th>
<th>(12) ln(digestive)</th>
<th>(13) ln(respiratory)</th>
<th>(14) ln(external)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(GDP/cap)</td>
<td>-0.0034***</td>
<td>0.0010*</td>
<td>-0.0019**</td>
<td>-0.0039</td>
<td>0.029**</td>
<td>-0.0038**</td>
<td>-0.0017*</td>
<td>0.0042**</td>
<td>0.0034</td>
<td>0.00032**</td>
</tr>
<tr>
<td>Unemployment</td>
<td></td>
</tr>
<tr>
<td>Doctors</td>
<td>-0.0061***</td>
<td>-0.0317***</td>
<td>-0.0116**</td>
<td>-0.0051**</td>
<td>-0.0017</td>
<td>-0.0072***</td>
<td>-0.0390**</td>
<td>-0.0083**</td>
<td>-0.0067**</td>
<td>-0.0037**</td>
</tr>
<tr>
<td>Secondary education</td>
<td>-0.00124***</td>
<td>0.00131**</td>
<td>-0.00114</td>
<td>0.00096**</td>
<td>0.00125**</td>
<td>-0.00111**</td>
<td>-0.00111**</td>
<td>-0.000911</td>
<td>0.000873</td>
<td>0.000649</td>
</tr>
<tr>
<td>Enrolment</td>
<td></td>
</tr>
<tr>
<td>Male share</td>
<td>-0.0796**</td>
<td>0.00293</td>
<td>-0.0657</td>
<td>-0.00013</td>
<td>0.0199**</td>
<td>-0.0709**</td>
<td>0.0185**</td>
<td>-0.0818**</td>
<td>-0.0824</td>
<td>0.19**</td>
</tr>
<tr>
<td>Old share</td>
<td></td>
</tr>
<tr>
<td>Rural share</td>
<td>0.0000156</td>
<td>0.00168**</td>
<td>0.00153</td>
<td>0.00143**</td>
<td>0.000655</td>
<td>0.000415***</td>
<td>0.00268**</td>
<td>0.000126</td>
<td>0.00134**</td>
<td>0.00112</td>
</tr>
<tr>
<td>Industry share</td>
<td>-0.00335***</td>
<td>-0.00125</td>
<td>-0.00435**</td>
<td>-0.00156**</td>
<td>0.000217**</td>
<td>-0.00299**</td>
<td>-0.00597**</td>
<td>-0.00452**</td>
<td>0.00134**</td>
<td>0.00288**</td>
</tr>
<tr>
<td>Cores</td>
<td>0.612**</td>
<td>0.074</td>
<td>1.392</td>
<td>-2.751**</td>
<td>5.592**</td>
<td>-6.699</td>
<td>3.705</td>
<td>1.702</td>
<td>10.11**</td>
<td>1.972</td>
</tr>
</tbody>
</table>

Notes: Estimation using fixed-effects regression with Driscoll-Kraay standard errors (in parentheses). The maximum lag to be considered in the autocorrelation structure was 2. Significance levels * p < 0.1, ** p < 0.05, *** p < 0.01.

Source: own calculations.

The long and severe transition has driven into poverty a large share of the population and inevitably affected their health condition making it more sensitive to changes in economic conditions.
evolution and supporting a countercyclical pattern. The absolute poverty rate increased from 5.7 percent in 1990 to 28.2 percent in 1994 and 39.5 in 2000 (Zamfir et al., 2010). Because of mass layoffs in unprofitable state-owned enterprises and a slow development of private sector jobs due to human capital issues, unemployment became a “stagnant pool” with low chances of finding work in the new economy (Earle, Pauna, 1998). But the low unemployment rate didn’t measure this well. Unemployment has not soared because there was no “shock-therapy” with privatisation. Also, the large shadow economy, high share of people practicing subsistence agriculture (thanks to an outflow from urban areas and repatriation of land taken by the Communist regime) and in 2002 emigration to the Schengen area absorbed some labour market distress.

Conclusions

Two studies (Neumayer, 2005; Gerdtham, Johannesson, 2005) show that economic activity generates a two-sided effect on mortality. As mortality is both pro-cyclical and counter-cyclical, research focuses on the net effect or which influence is stronger. We find mortality followed a countercyclical pattern in post-communist Romania at the subnational level 1997-2014. In the fixed-effects model, GDP per capita drives this result as the unemployment rate as an alternative proxy did not show a significant impact on overall mortality perhaps due to the nature of transition unemployment in Romania. Like other countries, more doctors and higher human capital negatively impact overall mortality. Circulatory diseases mortality, neoplasms mortality and external cause mortality followed a countercyclical pattern relative to economic growth with respiratory mortality alone not following a countercyclical pattern suggesting a different policy approach to this particular kind of mortality in Romania. Alone among all types of mortality including overall mortality, digestive disease mortality is partly explained by the unemployment rate which is an area for future research as no explanation is found here.

Decreasing mortality is one of the objectives in the National Sustainable Development Strategy for Romania 2013-2020-2030 (Government of Romania & United Nations Development Program, 2008). For example, in 2015 and 2016 the Ministry of Health developed and financed 15 national programs with a major impact on public health and mortality rates targeting certain diseases (e.g. communicable diseases, HIV, tuberculosis). Also, a national program for early active detection of cancer by organized screening is available starting with 2015 (Government of Romania, 2015). In addition to these programs, the National Health Insurance House in Romania is running 14 national curative health programs, including the National Program of Cardiovascular Diseases and the National Cancer Program (Government of Romania, 2015) to reduce mortality associated with these categories of diseases.

Across overall and various types of mortality, we find healthcare availability is very important to reduce mortality caused by circulatory, digestive diseases and neoplasms. The level of education also is an important factor for preventing circulatory diseases. As the risk of developing cardiovascular disease is higher in developing countries compared to developed countries (Gaziano, 2005), an education initiative in preventing such mortality is recommended. And such an initiative must begin early on in the educational process as the risk of developing circulatory disease is not only higher in developing countries, but also appears even earlier in individual’s lifetime compared to developed countries (Reddy, Yusuf, 1998). Our finding of a lower male share associated with a higher mortality caused by
circulatory diseases also suggests targeting more vulnerable males. Though the National Health Strategy 2014-2020 for Romania includes a National Prevention Plan (Ministry of Health, 2014) to reduce the mortality rate (one of the general objectives of the strategy), our paper argues for a more nuanced policy linking the National Plan to economic activity indicators and the counter-cyclical nature of mortality and subgroups within the population.

References

PEREINAMUMO IR MIRTINGUMO POVEIKIS POSTKOMUNISTINĖJE RUMUNIJOJE

Adrian V. Horodnic, Gregory Brock, Cristian Incaltarau

SANTRAUKA

REIKŠMINIAI ŽODŽIAI: mirtingumas, ekonominis augimas, Rumunija.
1 APPENDIX

Table 1A. Descriptive statistics of the variables used in analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>756</td>
<td>11.7869</td>
<td>1.55914</td>
<td>9.183554</td>
<td>17.5696</td>
</tr>
<tr>
<td>Circulatory diseases mortality</td>
<td>756</td>
<td>7.299419</td>
<td>1.418343</td>
<td>4.717301</td>
<td>12.22923</td>
</tr>
<tr>
<td>Neoplasms mortality</td>
<td>756</td>
<td>1.959508</td>
<td>0.3048159</td>
<td>1.207714</td>
<td>2.890221</td>
</tr>
<tr>
<td>Respiratory diseases mortality</td>
<td>756</td>
<td>0.6282916</td>
<td>0.187110</td>
<td>0.233472</td>
<td>1.327058</td>
</tr>
<tr>
<td>Digestive diseases mortality</td>
<td>756</td>
<td>0.6721274</td>
<td>0.16415</td>
<td>0.3064227</td>
<td>1.287373</td>
</tr>
<tr>
<td>External causes mortality</td>
<td>756</td>
<td>0.598140</td>
<td>0.1263476</td>
<td>0.2757311</td>
<td>1.193345</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>756</td>
<td>18636.89</td>
<td>9455.175</td>
<td>5768.683</td>
<td>76008.93</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>756</td>
<td>7.637434</td>
<td>3.269143</td>
<td>1.3</td>
<td>21.3</td>
</tr>
<tr>
<td>Doctors</td>
<td>756</td>
<td>1.799619</td>
<td>0.9398064</td>
<td>0.7971908</td>
<td>5.639696</td>
</tr>
<tr>
<td>Secondary education share</td>
<td>756</td>
<td>76.00648</td>
<td>13.18846</td>
<td>37.95951</td>
<td>126.9737</td>
</tr>
<tr>
<td>Male share</td>
<td>756</td>
<td>49.11018</td>
<td>0.570159</td>
<td>46.65764</td>
<td>50.40533</td>
</tr>
<tr>
<td>Old share</td>
<td>756</td>
<td>14.16608</td>
<td>1.992167</td>
<td>8.974751</td>
<td>21.47624</td>
</tr>
<tr>
<td>Rural share</td>
<td>756</td>
<td>48.61233</td>
<td>14.00633</td>
<td>0</td>
<td>92.88013</td>
</tr>
<tr>
<td>Industry share</td>
<td>756</td>
<td>23.02277</td>
<td>6.115158</td>
<td>7.45098</td>
<td>43.40292</td>
</tr>
</tbody>
</table>

Source: own calculations.

2 APPENDIX

Table 2A. The Results of Model Specification Tests

<table>
<thead>
<tr>
<th></th>
<th>(1) ln(mortality)</th>
<th>(2) ln(mortality)</th>
<th>(3a) ln(mortality)</th>
<th>(4a) ln(mortality)</th>
<th>(3b) ln(mortality)</th>
<th>(4b) ln(mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesaran test</td>
<td>-1.876(0.0007)</td>
<td>-2.615(0.0089)</td>
<td>38.087(0.0000)</td>
<td>36.954(0.0000)</td>
<td>-2.280(0.0226)</td>
<td>-2.412(0.0159)</td>
</tr>
<tr>
<td>Friedman test</td>
<td>7.435(1.0000)</td>
<td>5.390(1.0000)</td>
<td>210.399(0.0000)</td>
<td>202.003(0.0000)</td>
<td>4.538(1.0000)</td>
<td>3.679(1.0000)</td>
</tr>
<tr>
<td>Frees test</td>
<td>5.7530.1294*</td>
<td>7.4290.1438*</td>
<td>5.8710.1438*</td>
<td>5.5730.1438*</td>
<td>5.5120.1438*</td>
<td>5.7540.1438*</td>
</tr>
<tr>
<td></td>
<td>0.1695**</td>
<td>0.18885**</td>
<td>0.18885**</td>
<td>0.18885**</td>
<td>0.18885**</td>
<td>0.18885**</td>
</tr>
<tr>
<td></td>
<td>0.2468***</td>
<td>0.2763***</td>
<td>0.2763***</td>
<td>0.2763***</td>
<td>0.2763***</td>
<td>0.2763***</td>
</tr>
<tr>
<td>Wooldridge test</td>
<td>37.265(0.0000)</td>
<td>39.881(0.0000)</td>
<td>72.867(0.0000)</td>
<td>64.656(0.0000)</td>
<td>72.867(0.0000)</td>
<td>64.656(0.0000)</td>
</tr>
<tr>
<td></td>
<td>df=(1, 41)</td>
<td>df=(1, 41)</td>
<td>df=(1, 41)</td>
<td>df=(1, 41)</td>
<td>df=(1, 41)</td>
<td>df=(1, 41)</td>
</tr>
<tr>
<td>Modified Wald χ²</td>
<td>1139.78(0.0000)</td>
<td>991.96(0.0000)</td>
<td>334.60(0.0000)</td>
<td>357.42(0.0000)</td>
<td>950.32(0.0000)</td>
<td>954.43(0.0000)</td>
</tr>
</tbody>
</table>

Note: ρ value is given in parenthesis; *α=0.10; ** α=0.05; *** α=0.01; ****without region and time fixed effects.

Source: own calculations.