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1. REGULAR INTEREST 
 
1.1 General Introduction: Percentages  
 

Percentages are often used only when the given rates are constant, that is, unchanging 
over time. In such cases we say that a percentage is simply a way of recording a fraction 
whose denominator is 100. 
 However, many practical problems are in one way or another connected with time: 
demographics calculates the annual percentage growth of a population, commerce the 
monthly percentage growth of turnover, nuclear physics the daily, monthly or yearly percent 
reduction in radioactive materials, and so forth. 
 Such problems investigate the change over time of a given unit (occasionally termed 
population). This change may be either discrete or continuous. Discrete change is understood 
as a process in which there occurs a sudden change from one population value to another. The 
time that passes between changes is variously called the transition, recalculation, or 
conversion period, or simply period. We shall most commonly employ the latter term. 
 The rate of population change, in the case of both discrete and continuous growth, is 
shown by a coefficient of the speed of change known as the percentage rate. Because the 
percentage rate indicates the speed of change, it is expressed as a percentage per unit of time, 
the number of percentage points that change in one unit of time. In most cases, this unit of 
time will be taken to be the conversion period. However, within one unit of time there may be 
more than one conversion. In such a case, the percentage rate applied to one period will be 
proportionally smaller and termed factual, while the percentage rate applied to the entire unit 
of time will be termed nominal. As we can see, the nominal percentage rate defines the speed 
of change of a population and is related to a corresponding unit of time. 
 In the case of continuous growth, the population increases (or decreases) without 
pause, all the time. Therefore, the conversion period is close to zero. However, even in this 
case the speed of change is expressed as a nominal percentage rate. In many practical 
problems, especially financial ones, the period of a nominal percentage rate is one year. 
Unless otherwise noted, in this work we will also consider the period of the nominal 
percentage rate to be one year. 
 We shall be analyzing some problems dealing with interest in which there is a constant 
percentage rate and the population is a function of time. Thus, we shall be deriving regular 
and compound (cumulative) interest formulas. It will be seen that the regular interest is a 
linear function of time, while compound interest is exponential. 
 
1.2 Regular Interest 
 

The essence of regular interest is that it is calculated only from the initial population, 
when the percentage is of a constant size for each unit of time. The rate of growth of regular 
interest is constant, as equal periods of time correspond to an equal increase in the interest. 
 Let us write an equation expressing the initial population’s dependence on the number 
of transitions (time) and the interest rate. If S0 is the initial number, Sn is the final 
(compounded) number, p is the interest rate, i.e., the percentage calculated for a unit of time, 

100
pi =  is the interest rate expressed as a fraction (a decimal), and n is the time measured in 
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periods, then the increase in the initial number (the initial sum) over n periods (the interest) 
will be S0·i·n. Adding the increase to the initial sum we get 
 niSSSn ⋅⋅+= 00 . 
 From here we can derive the formula for regular interest (percentages): 
 ( )niSSn ⋅+= 10 . 
 This formula has been derived measuring time in periods. Here time is expressed in 
natural numbers. Therefore the compounded sum Sn changes discretely. However, it is 
obvious that time may also be measured continuously, i.e. expressed in real numbers. In this 
case the final number (the compounded sum) shall be written not as Sn but as S, and the 
formula for regular interest becomes a simple linear function of time. 
 ( )niSS ⋅+= 10 .     (1.1) 
 The growth of the initial number is calculated with the resulting formula. Occasionally 
it is necessary to calculate not increase, but decrease. In such a case, 
 niSSSn ⋅⋅−= 00 . 
 Keeping in mind the abovementioned conditions, we get: 
 ( )niSS ⋅−= 10 .     (1.2) 
 
1.3 The Time Factor. Compound (Cumulative) Interest 
 
 Compound, as well as regular, interest can be used to calculate the quantitative 
parameters of certain processes that occur in nature and society and that change over time. 
The essence of compound interest is that each new population (the contents of a new period: 
the number of residents or animals, a biological product, a mass of radioactive material, 
capital, etc.) is calculated by evaluating the change over the previous period (most often an 
increase: in the number of residents or animals, growth of biomass, interest, etc.). In other 
words, there is an accumulation of growth: the increase is added to the previous population. 
The increase in the new period is calculated not only from the initial contents under 
calculation, but also from the increase of the previous period. 
 Interest is termed compound (or cumulative) when, at the beginning of every period, 
the part of the population that increased over the previous period is automatically added to the 
main population and continues to increase together with it. 
 It has been determined that the growth rate of such a population is proportional to its 
size: the larger a population is at a given moment of time, the faster it increases at that 
moment, and vice versa. 
 Mathematically, compound interest is repeatedly determined at the end of every period 
by multiplying the previous value by the coefficient of the speed of change. 
 When n = 1, 2, 3, ..., we find the following: 
 ( )iSiSSS +=+= 10001 , 
 ( ) ( )( ) ( )2

001 1111 iSiiSiSiSSS +=++=+=+= 112 , 
 ……………………………………………… 
 .)1(011

n
nnn iSiSSS +=+= −−  

 Therefore the final number (the compounded sum) after n periods is as follows: 
.)1(0

n
n iSS +=  

 In deriving this formula it has been assumed that the resulting increase in the number 
will be added to the initial number at the end of every period, because time, as in the case of 
regular interest, is changing discretely. However, the time value can change continuously in 



S.A. Girdzijauskas  ISSN 1648 – 4460 
 

Chapter 1. Regular Interest 
 

TRANSFORMATIONS IN BUSINESS & ECONOMICS, Vol. 7, No 2 (14), Supplement A, 2008 

24

this case as well. Then the formula for compound interest is a simple exponential function of 
time (n ≥ 0).  
 .)1(0

niSS +=      (1.3) 
 If i > 0, the resulting expression is an evenly increasing function, while if –1 < i < 0, it 
is an evenly decreasing function. In the latter case the following equation would be more 
convenient: 
 niSS )1(0 −= ,     (1.4) 
where i is a coefficient of decline (i > 0). 
 
Example 1.1 
The number of residents of town X grows, on average, by 0.7 percent per annum. What will 
be the increase in the number of town residents over 12 years, if at the present time there are 
7.5 million residents? 
Solution. 
Data: S0 = 7,500,000; i = 0.007; n = 12. 
Using the compound interest formula (1.3), we get: 
 S = 7,500,000 (1 + 0.007)12 = 8,154,830; 
 S – S0 = 8,154,830 – 7,500,000 = 654,830. 
Answer: over 12 years the number of town residents will increase by 654,830. 
 
Example 1.2 
A factory plans to increase production by 75% over 5 years. What should its annual increase 
in production be? 
Solution.  
Data: n = 5. An increase in production of 75% means that S = S0·175% or 75.1

0

=
S
S . 

Using the compound interest formula (1.3), we express i: 
( )

.1

;1

0

0

-n

n

S
Si

S
Si

=

=+

 
.1184.011184.1175.15 =−≈−=i  

Because p = 100·i, the annual increase in production should be 11.84%. It is worth noting that 
the resulting number is smaller than a proportional part of the percentage (75:5 = 15). 
Answer: 11.84%. 
 
Example 1.3 
The half-life T (the time during which the initial amount of radioactive material decreases by 
half) of one of the isotopes of radioactive radium equals five days. What is the decay rate 
coefficient λ, if the law of decay1 is expressed by the equation S = S0(1–λ)n? 

                                                
1 The law of radioactive decay S = S0(1-λ)n is more frequently expressed by the equation S = S0·e-λ·t. In general, 
if the decay rate coefficients λ used are equivalent, the results are the same. 
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Solution. 
It was stated that the quantity of radium decreases by one half over the given time (half-life). 
That means that S = 0.5·S0. If we incorporate this expression into the given equation, we get 

5
00 )1(5.0 λ−=⋅ SS . From this we find that 129.05.01 5 =−=λ . 

Answer: the decay rate (measured in days) coefficient λ = 0.129. 
 
1.4 Continuous Exponential Change 
 
 Let us now return to the original (discrete) compound interest formula in which each 
period’s increase is added to the earlier population at the end of that period. 
 Obviously the period’s increase can be added to the main population not only once, at 
the end of the period, but also more frequently. 
 It has been mentioned that the time between two consecutive interest calculations is 
called the conversion period. An interest rate is usually determined for a unit of time. 
However, a unit of time can have not only one, but several conversion periods. 
 An interest rate calculated for a unit of time containing several conversion periods is 
called a nominal interest rate. 
 We shall be using this interest rate most often in our calculations. It should be noted 
that even when additional calculations are not performed, that is, when there is only one 
calculation for a unit of time, the interest rate can still be called nominal. 
 We have already noticed that the unit of time in many practical problems is one year, 
though in practice it could be different. As the unit of time can have not only one, but several 
conversion periods, the interest rate for one period will equal the nominal interest rate divided 
by the number of conversion periods. The period’s interest rate is the factual interest rate for 
that period. 
 Thus, if in one unit of time (let us say one year) we should perform not one, but 
several calculations (i.e., if we should add the increase to the earlier population at the end of 
every part 1/k of the unit of time—let us say, every month) while the interest rate, as before, 
remained nominal, then population growth would be as follows: 
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 So, at the end of the first unit of time (after one year) the size of the population will be: 
k

k
iSS 






 += 101  

 Continuing to reason in this way, it is easy to see that at the end of two units of time 
(after two years) the size of the population will be: 

k

k
iSS

2

02 1 





 += . 

 Finally, after n analogical units of time (after n years) we will have: 
nk

n k
iSS 






 += 10 . 
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 If we assume that n can acquire not only whole number values, we will have: 

 
nk

k
iSS 






 += 10      (1.5) 

 We have now derived a formula for compound interest in which there are several 
interest conversions in one unit of time. 
 
Example 1.4 
Calculate the value of €1 invested at the nominal (annual) interest rate of 8% after one, five, 
and ten years, when the conversion period is: 1) one year; 2) half a year; 3) one quarter; 4) 
one month; 5) one day. 
Solution. 
Data: S0 = 1; i = 0.08; a) n = 1, b) n = 5, c) n = 10; 1) k = 1, 2) k = 2, 3) k = 4, 4) k = 12, 5) k = 
365. 
 When n = k = 1 we have a typical interest situation: 
 08.1)08.01(1 =+⋅=S (€). 
 When n = 1; k = 2 we will have: 

 0816.1
2
08.011

2

=





 +⋅=S (€). 

 When n = 1; k = 4 we will have: 

 082432.1
4
08.011

41

=





 +⋅=

⋅

S (€). 

 The calculations for the other values of n and k are performed in a similar way. 
Finally, when n = 10; k = 365, we will have: 

 253462.2
365

08.011
36510

=





 +⋅=

⋅

S (€). 

 Let us compile a table of the results of all the calculations: 
No. Conversion 

period 
Conversion 
frequency k 

Value of investment (€) at the end of 
1 year 5 years 10 years 

1 One year 1 1.0800 1.4693 2.1589 
2 Half a year 2 1.0816 1.4802 2.1911 
3 One quarter 4 1.0824 1.4859 2.2080 
4 One month 12 1.0830 1.4898 2.2196 
5 One day 365 1.0833 1.4918 2.2253 

  
 The results indicate that, even though the nominal interest rate is constant, the value 
(accumulated sum) of the investment at the end of the given time period changes as the 
conversion frequency is changed. This raises the problem of interest rate equivalency. We 
shall explore equivalency problems in greater detail in the next chapter. 
 Analysis of the example results shows that, as the conversion frequency k is increased, 
the accumulated sum at the end of the time period grows. It should be noted that the growth 
rate decreases for larger values of k, and the sequence of the values approaches a certain limit 
(Figure 1.1). In addition, we see that the dependence of the accumulated amount on the 
conversion frequency is not very large: even when the number of conversions is significantly 
increased, if the growth rate is 8%, the increase in the accumulated sum does not exceed 3%. 
Moreover, it can be seen from the example that only the initial increase of conversion has a 
strong effect on the increase in the accumulated sum: with an annual accumulation rate it is 
not very effective to convert more often than once a month. 
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Fig. 1.1 Relation of sum accumulated over 10 
years to number of recalculations in one period (K 0 

= 1; i  = 0.08)
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 Now let us return to the formula for compound interest (1.5), when there are several 
interest conversions k in one unit of time. If we assume that the increase is continuous, i.e. if n 
→ ∞ and the duration of the part of the period approaches 0, 






 → 01

k
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⋅= , then 

 
 .0

nieSS ⋅=      (1.6) 
 We have now derived an equation for continuous (natural) exponential change, 
sometimes called the equation of continuous compound interest. It can be used to calculate the 
quantitative parameters of various processes: an increase in the number of residents, the 
growth of timber in a forest, radioactive decay, the multiplication of bacteria during a 
biochemical process, etc. If i > 0 we have exponential growth, and when i < 0 we have 
exponential decline. 
 
Example 1.5 (a continuation of Example 1.4) 
Calculate the value of €1, invested with an 8% nominal (annual) interest rate, after 1, 5, and 
10 years, using the equation for continuous change. 
Solution. 
Data: S0 = 1, i = 0.8, a) n = 1; b) n = 5; c) n = 10. 
 0832.108,0 == eS (€), 
 4918.15·08,0 == eS (€), 
 2255.210·08,0 == eS (€). 
Answer: a) €1.0832; b) €1.4918; c) €2.2255 
 If we compare the results of the last two examples, we see that daily recalculation and 
continuous change give very similar results. 
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Example 1.6 
The half-life T of the isotope E of radioactive radium equals five days. What is the decay 
coefficient λ for this material if the law of decay is expressed by the equation neSS ⋅−= λ

0 ? 
Solution. 
It was stated that the quantity of radium decreases by one half over the given time (half-life). 
That means that S = 0.5·S0. It was also stated that n = 5. Inserting these values into equation 
(1.6), we get  

 5
0

0

2
·= λeS

S ; 139.0
5

5.0ln
==λ . 

 Answer: the decay coefficient λ = 0.139. 
 If we compare this result with that of Example 1.3, where λ = 0.129, we see a certain 
disagreement. It arises from the different frequencies of conversion. Let us note that the decay 
half-lives in both cases are the same. This means that only when the decay coefficients are 
equivalent will the results obtained be the same. 
 It should be emphasized that the formula for natural change is not widely used in 
economical calculations. However, it is useful for evaluating other populations and is 
therefore rather common. 
 
1.5 Equivalent Interest Rate 
 
 In the previous section, when discussing the fact that there can be several conversions 
in one unit of time, we encountered the problem of interest rate equivalence. 
 In finance, one often solves tasks in which investments are compared. In these cases 
the values of percentage rates need to be set in such a way that they give equivalent results 
even under different conditions of interest capitalization. For example, consider this problem 
of compound interest: if, given percentage rate i, €1 gives P interest in one year, then what 
should be percentage rate i12 = i(k)/12 so that, capitalizing interest monthly, the same interest P 
would be returned after one year? 
 Equivalent to percentage rate i is the percentage rate ik (ik = i (k)/k), which, when 
interest is capitalized k times per year, yields the same interest in the same time.  
 To better understand the problem of equivalence, let us analyze a problem similar to 
Example 1.4. Now, however, in formulas and elsewhere we will use K (for capital) rather than 
S (for number).  
 
Example 1.7 
€1 is deposited in a bank account for a period of one year when the nominal annual compound 
interest rate is 12%. Calculate the value of the deposit after one year if in that year it is 
capitalized one, two, four, and twelve times.  
Solution. 
Data: K0 =1; i (k) =0.12; k =1; k =2; k =4; k =12. 
 The value of the deposit after one year, capitalized once, will be: 
 ( ) 12.112.011 =+⋅=K (€). 
Obviously, the deposit increases 12% in one year. 
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 The value of the deposit after one year, capitalized twice, will be: 

 1236.1
2
12.011

2

=





 +⋅=K (€). 

We note that in a year the deposit increases 12.36 %. We also note that this increase is larger 
than the previous one. The difference between the increases is 0.36%.  
 The value of the deposit after one year, capitalized four times, will be: 

1255.1
4
12.011

4

=





 +⋅=K  (€). 

In a year the deposit increases 12.55%. 
 The value of the deposit after one year, capitalized every month, will be: 

 1268.1
12
12.011

12

=





 +⋅=K (€). 

In this case, in one year the deposit increases 12.68%. 
 Let us compile a table of the results: 
No. Conversion 

period 
Conversion 
frequency k 

Nominal interest 
rate i(k) (%) 

Factual (period) 
interest rate i(k)/k (%) 

Value of investment 
after one year (€) 

% increase 
per year 

1 One year 1 12 12 1.12 12 
2 Half a year 2 12 6 1.1236 12.36 
3 Quarter 4 12 3 1.1255 12.55 
4 Month 12 12 1 1.1268 12.68 
  
 We see that even when the nominal annual interest rate is 12% but it is converted 2, 4, 
or 12 times a year, the increase per year exceeds 12% and is correspondingly equal to 12.36, 
12.55 or 12.68%. Thus we may say that 6% half-yearly interest is equivalent to 12.36% 
annual, 3% quarterly interest is equivalent to 12.55% annual, and 1% monthly interest is 
equivalent to 12.68% annual.  
 Let us analyze one more example.  
 
Example 1.8 
€5,000 are deposited in a bank account for one year with an annual compound interest rate of 
12%. What will be the half-yearly, quarterly and monthly compound interest rates equivalent 
to it? 
Solution.  
The annual interest rate i(k) = 0.12. The interest rates for half a year (i2 = i(2)/2), a quarter (i4 = 
i(4)/4), and a month (i12 = i(12)/12) are considered to be a corresponding part of the nominal 
interest rate. In addition, the capitalization period for this interest is correspondingly half a 
year, one quarter or one month.  
 If the interest is calculated once a year, then at the end of the year the value K of the 
initial deposit will be: 
 ( ) 560012.1500015000 =⋅=+= iK (€). 
 The value of the deposit after one year will be the same when the period of interest 
capitalization is half a year: 

 
( )

5600
2

15000
22

=









+ i (€), 
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( )

12.1
2

1
22

=







+

i , 

 ( ) ( ) 1166.0112.122 ≈−=i . 
 We have determined that when the interest is capitalized twice a year, the nominal 
interest rate equals 11.66%, which is less than the annual interest rate (12%). 
 We shall now similarly calculate the quarterly interest rate under the initial conditions: 

( )
12.1

4
1

44

=







+

i , 

( ) ( ) 1148.0112.14 44 ≈−=i , 
and also the monthly interest rate: 

 
( )

12.1
12

1
1212

=







+

i , 

 ( ) ( ) 1138.0112.112 1212 ≈−=i . 
 We may note that the results do not depend on the size of the deposit.  
 Let us compile a table of results: 

Period Number of periods 
k per year 

Nominal interest 
rate i(k) (%) 

Factual (period) 
interest rate i(k)/k (%) 

Year 1 12 12 
Half year 2 11.66 5.83 
Quarter 4 11.49 2.87 
Month 12 11.39 0.95 

  
 It is important to clearly understand which of these interest rates are equivalent to each 
other. In this example, the 12% nominal annual interest rate is equivalent to the nominal 
interest rates of 11.66%, 11.48%, and 11.40% when their conversion periods are 
correspondingly 6, 3 and 1 month. Equivalency may also be estimated as follows: an annual 
interest rate of 12% is equivalent to a half-yearly rate of 5.83%, a quarterly rate of 2.87%, and 
a monthly rate of 0.95%. Finally, the following interest rates will also be equivalent: a 
monthly interest rate of 0.95% is equivalent to an annual rate of 11.66% compounded every 6 
months, or to an annual rate of 11.48% compounded every 3 months, and so on. 
 In solving the problem, some operations were repeated. Now let us generalize our 
calculations. If i, i(2), i(4), i(12), ..., i(k) are equivalent nominal annual interest rates whose 
conversion periods are, respectively, one year, half a year, one quarter, and one month, etc., 
then 

 
( ) ( ) ( ) ( ) kk

k
iiiii 










+==










+=










+=










+=+ 1...

12
1

4
1

2
11

12124422
. 

 We may therefore derive 

 
( ) kk

k
ii 










+=+ 11 ; 

( )
k

k
i

k
i +=+ 11 ; 

( )
11 −+= k

k
i

k
i . 

 Thus we get an equation for the equivalency of nominal interest rates: 

 
( ) ( )kii kk 11 −+= ,    (1.7) 

 where k is the number of conversions per year, i(k) is the nominal interest rate with k 
conversions per year, and i is the nominal annual interest rate (k = 1). 



S.A. Girdzijauskas  ISSN 1648 – 4460 
 

Chapter 1. Regular Interest 
 

TRANSFORMATIONS IN BUSINESS & ECONOMICS, Vol. 7, No 2 (14), Supplement A, 2008 

31

 
 Solving the equation for interest rate i, we find that 

 
( )

11 −









+=

kk

k
ii .    (1.8) 

 
Example 1.9 
A deposit can be made to one of two banks. The first bank is offering 14% annual interest, the 
second 1.1% monthly interest (compound percentages). Which bank is offering larger 
interest? 
Solution. 

Data: i =14;
( )

011.0
12

12

=
i ; k =12. 

 Inserting the factual (period) interest rate 
( )

011.0
12

12

=
i  into formula (1.8) we will derive 

the annual interest rate: 
 i = (1 + 0.011)12 – 1 = 0.1403 
 The derived interest rate of 14.03% is larger than the interest rate offered by the first 
bank, namely 14%. Therefore we may conclude that the interest offered by the second bank is 
larger. 
 This problem may also be solved using formula (1.7). We take i = 0.14 and find an 
equivalent nominal interest rate with 12 conversions. 
 ( ) ( )12114.011212 −+=i =0.1317. 

 From here we can find the monthly interest rate. It is 
( )

01098.0
12

12

=
i . The calculated 

monthly interest rate of 1.098% is smaller than the interest offered by the second bank (1.1%). 
Thus we reach the same conclusion again: the interest offered by the second bank is larger. 
Answer: the second bank is offering larger interest. 
 Formulas (1.7) and (1.8) are useful in determining the equivalency of two nominal 
interest rates. In order to determine the equivalency of a nominal and a factual interest rate, it 
is more convenient to express the period interest rate separately. By marking 

( )
k

k
i

k
i

= , we get 

the following from the above formulas: 

 11 −+= k
k ii ,     (1.9) 

 or 

 ( ) 11 −+= k
kii .    (1.10) 

 Let us solve Example 1.9 using formula (1.9): 
 01098.0114.0112

12 ≈−+=i . 
 This problem can also be solved using formula (1.10). Then 
 i = (1 + 0.011)12 – 1 ≈ 0.1403. 
Conclusion: because 1.098 < 1.1 (or because 14.03 > 14), the interest rate offered by the 
second bank is, however insignificantly, larger. 
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Example 1.10 
A bank is paying 5% annual interest (commercial2 interest: “30/360”), however the interest is 
paid every month. What is the equivalent annual interest rate if we assume that the interest is 
reinvested immediately after being paid? 
Solution. 
 Compound interest may also be applied in this case. Using formula (1.8), we get: 

0512.01
12
05.01

12

=−





 +=i . 

The result is that i = 5.12%. 
Conclusion: the equivalent interest rate is larger than the base rate by 0.12%. 
 
 Now we shall compare interest rates based on compound percentages and the law of 
natural growth. We will assume that both types of calculations should yield identical results. 
Let us make the right sides of the equations ( ) ( )kin

n
n

n eKKiKK ⋅=+= 00 ir    1  equal: 

 ( ) ( )kinn eKiK ⋅+ 00 = 1 . 
 Cancelling out and calculating the nth root, we get 
 

( )kiei =+1 , 

 
( ) ( )ii k += 1ln .    (1.11) 

 
Example 1.11 
A compound percentage rate equals 10%. What is the equivalent rate of continuous 
compound interest? 
Solution. 
Using formula (1.11) we find: 

( ) 0953.01.1ln ==ki . 
We have determined that 10% compound interest and 9.53% natural growth law give the 
same results over the same period.  
Answer: 9.53%. 
 
1.6 Discounting Using Compound Percentages 
 

Discounting is the recalculation of any predetermined meaning of a value for an earlier 
period.  

In the case of regular interest, in the discussion about bank discounting, we needed to 
recalculate the final value into an earlier, interim one. With compound interest, various 
interim values are usually recalculated for the initial (the present) time, that is, the present 
value of the capital is determined. In this case, the equation for compound interest is solved to 
express capital K0: 

 
( )ni

KK
+

=
10 . 

Having marked v
r

ri ==+
1  o ,1 , we find: 

nvKK ⋅=0 . 

                                                
2 Commercial interest “30/360” means that the calculations are carried out for a conditional month (30 days) and 
a conditional year (360 days). 
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We have thus determined a formula for discounting compound interest. Here v is a 
discount coefficient. From this formula we can see that the present value K0 of monetary 
funds equals the product of the discounted funds K and the discount coefficient v raised to the 
power n of the number of years.  
 
Example 1.12 
What sum of money needs to be deposited in a savings bank so that, given a 6% annual 
compound interest rate, there would be €9,000 after 5 years? 
Solution. 
We discount the given sum of money: 

32.672574726.00009
06.01

10009
5

0 =⋅≈







+
=K (€). 

Answer: €6,725.32. 
 
Example 1.13 
There are two ways to purchase some computer equipment: first, to buy one device with a 
lifetime of 6 years for €10,000; second, to buy two devices with lifetimes of 3 years each for 
€5,200 each, buying one of them now and the other when the first one wears down in 3 years. 
Let us determine which way is more economical, assuming an annual interest rate of 8% and 
keeping all other conditions the same in both cases. 
Solution. 
It may appear at first glance that the first option is more effective. However, when the present 
value of the expenses of the second option is determined, that is, when we discount the funds 
for implementing the second option, we see that: 

( )
93.932793.41272005

08.01
20052005 3 =+≈

+
+ (€). 

As we have discovered, the second way is more effective, since its present value is smaller by 
€672.07 (10,000 – 9,327.93), or approximately 6.7% of the present value of the first project.  
 
Example 1.14 
There are two options (two projects) for the purchase and maintenance of a workbench, and 
their returns are identical. Let us determine which one of the two investment options is more 
effective, if the annual interest rate is 8% and the following purchase and maintenance 
expenses at the beginning of every year are known: 

Years Option I Option II 
1 2,000 4,400 
2 400 100 
3 600 200 
4 2,000 300 
5 400 400 
6 600 500 
Total: 6,000 5,900 

 
Solution. 
Let us determine the present value of each project by discounting the expenses of every year 
for the initial moment. After discounting the expenses needed to purchase and maintain the 
workbench, we get: 
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Option I 
2 000 400

1 08
600

1 08
2 000
1 08

400
1 08

600
1 08

2000 370 37 514 40 1587 66 294 01 408 35 5174 8

2 3 4 5+ + + + + ≈

≈ + + + + + =

, , , , ,
, , , , , , . 

Option II 
4 400 100

1 08
200

1 08
300

1 08
400

1 08
500

1 08
4 400 92 59 171 47 238 15 294 01 340 29 5536 51

2 3 4 5+ + + + + ≈

≈ + + + + + =

, , , , ,
, , , , , , .  

The calculations of the present value indicate that the second project is more 
expensive by €361.71 (5,536.51 – 5,174.8). 

When investment calculations are performed using Microsoft Excel, the financial NPV 
function can be used. Using this function, the following commands can be written down to 
solve Example 1.14: 

“=NPV(8%;400;600;2000;400;600)+2000 equals €5174.80.” 
“=NPV(8%;100;200;300;400;500)+4400 equals €5536.51.” 
Discounting problems will be further analyzed in subsequent chapters.  

  
1.7 The Value Equation 

 
In an earlier Section (1.6) we discussed the equivalence of interest rates. Now we shall 

discuss the equivalence of financial obligations. Usually, two interested parties participate in 
financial transactions, and for that reason the transaction is possible only when the interests of 
both parties involved are balanced. Because financial obligations are usually connected to 
certain time periods, it is necessary to determine the dependence of the value of money on 
time. As we have seen several times, the value of money changes with time: €1,000 now and 
one year from now are not the same money: if we deposit it in a bank, the €1,000 we have 
today will in one year produce interest, as well.  

In order to compare sums of money that are received or paid out at different times, it is 
necessary to recalculate them for the same moment in time, which is called the moment (or 
point) of comparison. Either future or present money values can be used in recalculation.  

The principle of equivalence of financial obligations demands that, for example, credit 
taken out now but paid back after a certain term be covered by an equivalent sum. This sum is 
dependent on the amount of time that passes from the taking of the credit to its coverage, as 
well as on the size of the interest rate agreed on. Equivalence of obligations is mathematically 
expressed by an equivalence or value equation. Here it is important to emphasize that the 
value equation can be written down not only for the initial time, but also for any other 
moment of comparison. Equations written down in such a way are equivalent, i.e., they have 
the same solutions.  

The value equation is very simple if the credit is covered in one instalment. 
Discounting the covering instalment, we find: 

( )ni
xK

+
=

1 , 
where K is credit given for n years with an interest rate of i, and x is the instalment that covers 
it.  

We can easily find the covering sum with this equation: 
x = K(1 + i)n. 
Obviously, this equation is the formula for compound percentages. 
Now let us say that the credit is covered not all at once, but in several instalments. 
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The interim sums K1, K2, ..., are paid after ni (i = 1, 2, ...) terms have passed. We must 
determine the value of the final instalment X, to be paid after n years. By discounting the 
coverage instalments for the initial moment, that is, the moment when the credit was taken, 
we get the value equation: 

( ) ( ) ( )nnn i
X

i
K

i
KK

+
++

+
+

+
=

1
...

11 21

21  .    (1.12) 

Let us illustrate our discussion with examples.  
 
Example 1.15 
A loan of €10,000 is taken out for 3 years with an 8% annual (compound) interest rate. The 
loan is to be repaid as follows: €8,000 will be returned after 2 years, and the remainder at the 
end of the term in 3 years. Let us determine the size of the final instalment.  
Solution. 

We will make an equation assuming that the size of the loan and the returned sum of 
money are equivalent. For that purpose we discount the repaid sum of money back to the 
moment at which the loan was taken out. We get the equation: 

32 08.108.1
000800010 X

+= . 

Having multiplied both sides of this equation by 1.083 and solved it for x, we get an 
equivalent equation: 

08.1000808.100010 3 ⋅−⋅=X . 
It can be seen that the new equation is also a value equation, written however for a 

different moment of comparison: after the term of repayment. With similar rearrangements we 
can find a value equation for any moment of comparison.  
From any such equation we find that X = €3,957.12. This is the answer. 

An analogous value equation can also be made when there is not one, but several 
interim instalments.  
 
Example 1.16 
A loan of €10,000 is taken out for 5 years with a 6% annual interest rate. The loan is to be 
repaid as follows: €4,000 will be returned after 2 years, €5,000 after 4 years, and the 
remainder at the end of the term in 5 years. Let us determine the size of the final instalment.  
Solution. 

Let us make a value equation by discounting the repaid sums to the moment the loan 
was taken out: 

542 06.106.1
5000

06.1
000400010 X

++= . 

By performing a similar rearrangement as in Example 1.15, we get: 
06.1000506.1000406.100010 35 ⋅−⋅−⋅=X . 

Noting that the latter equation is the value equation written for the moment of the end 
of the repayment term, we find the size of the final instalment: X = €3,318.19. This is the 
answer. 

K1 K2 X 

n1 n2 
n years 

Sum of coverage 


